Étiquette : rs3

  • Estimation vitesse véhicule IMU smartphone : état de l’art & limites

    Estimation vitesse véhicule IMU smartphone : état de l’art & limites

    Objectif

    L’objectif de cet article est clair : expliquer l’estimation vitesse véhicule IMU smartphone. Autrement dit, comment estimer la vitesse d’un véhicule uniquement à partir des capteurs inertiels (IMU) d’un smartphone, sans dépendre du GPS. Cette problématique d’estimation vitesse véhicule IMU smartphone est au cœur des recherches actuelles en mobilité numérique. Nous présentons donc l’état de l’art, les limites physiques (dérive, biais capteurs), et le rôle essentiel de RS3 / Telemachus pour tester et valider ces méthodes d’estimation vitesse véhicule IMU smartphone avant déploiement réel.

    estimation vitesse véhicule IMU smartphone
    Estimation de la vitesse véhicule via IMU smartphone (accéléromètres + gyroscopes).

    Contexte

    La mesure de vitesse est un élément fondamental des applications de mobilité : navigation, détection d’événements, consommation énergétique ou encore scoring de conduite.
    Sur smartphone, cette mesure repose souvent sur les signaux GNSS — mais lorsque ceux-ci sont indisponibles (tunnel, environnement urbain dense), la fusion inertielle devient une alternative.

    L’enjeu : déterminer si une IMU seule (accéléromètres + gyroscopes du smartphone) suffit à estimer correctement la vitesse.

    Méthodes étudiées

    Trois familles d’approches ressortent dans la littérature récente :

    1. Approches analytiques classiques
    2. Intégration des accélérations longitudinales après filtrage du biais gravitationnel.
    3. Nécessite une calibration fine et un repérage stable du véhicule.
    4. Sensible au drift cumulatif.

    5. Approches basées apprentissage

    6. Réseaux neuronaux (LSTM, CNN) entraînés sur des segments GNSS + IMU synchronisés.
    7. Ainsi, ils sont capables de compenser le drift sur des courtes durées, mais nécessitent un jeu de données massif.
    8. En revanche, ils sont peu généralisables entre véhicules et smartphones.

    9. Méthodes hybrides

    10. Utilisation de contraintes cinématiques (vitesse > 0, non-holonomie).
    11. Combinaison apprentissage + modèle physique.

    Ces approches cherchent à tirer parti des contraintes physiques (non-holonomie, vitesse positive) pour stabiliser l’estimation.
    Formellement, la vitesse longitudinale peut être estimée par :
    [
    v_t = \int (a_x – g \sin\theta)\,dt
    ]
    où (a_x) est l’accélération longitudinale mesurée, (g) la gravité et (\theta) l’inclinaison estimée.

    Approche DVSE (SmartphoneIMUSpeed2025)

    L’article DVSE – Deep learning-based Vehicle Speed Estimation (Xiao et al., 2025) propose un cadre d’apprentissage séquentiel supervisé par GNSS pour estimer la vitesse véhicule à partir de l’IMU d’un smartphone.
    Le cadre repose sur deux modules principaux :
    Noise Compensation Network (NCN) : un GRU corrige les composantes déterministes et stochastiques du bruit inertiel.
    Motion Transformation Network (MTN) : un réseau convolutionnel temporel aligne le repère du smartphone avec celui du véhicule.

    Le modèle est entraîné sur données réelles avec supervision GNSS et atteint une précision de MAE ≈ 2.35 m/s sur 60 secondes d’intégration.
    De plus, les auteurs démontrent une robustesse supérieure aux architectures LSTM classiques, notamment grâce à l’augmentation de données (poses aléatoires de smartphone) et à une fonction de perte spécifique compensant les décalages GNSS–IMU.

    Données et simulation RS3

    Pour comparer ces approches, le simulateur RS3 permet de :
    – générer des signaux IMU synthétiques à 10 Hz ;
    – introduire des biais réalistes de capteurs ;
    – simuler des scénarios urbains avec arrêts, freinages et accélérations.

    Les scénarios générés par RS3 permettent une validation systématique des modèles : dérive cumulée, influence des biais capteurs, et sensibilité aux postures de smartphone.
    Ainsi, cette approche favorise la reproductibilité scientifique et la calibration inter-modèles dans un cadre ouvert.

    Limites observées

    Type de méthode Dérive après 60 s Sensibilité capteur Portabilité
    Intégration brute > 20 % Très élevée Faible
    LSTM (données locales) ≈ 8 % Moyenne Moyenne
    Hybride contrainte + LSTM < 5 % Moyenne Bonne

    Aucune méthode n’élimine totalement la dérive : la fusion GNSS + IMU reste incontournable pour des durées supérieures à 1 min.

    Voir les travaux récents sur l’estimation de vitesse véhicule par IMU seule (DVSE, 2025), qui combinent réseau neuronal séquentiel et contraintes physiques pour corriger la dérive sans GNSS.
    Pour plus de détails sur le simulateur, consultez la page RS3, simulateur inertiel 10 Hz.

    Perspectives

    • Constituer un dataset IMU-only standardisé par type de smartphone avec RS3.
    • Normaliser ces données via le format pivot Telemachus.
    • Explorer la calibration adaptative des capteurs embarqués (apprentissage en ligne).

    Liens avec RS3 et Telemachus

    Les travaux DVSE ouvrent des perspectives directes pour RS3 et Telemachus :
    – RS3 peut générer des jeux de données synthétiques IMU-only pour tester la robustesse du modèle DVSE.
    – Telemachus fournit un format pivot pour normaliser ces données et publier les résultats d’entraînement sous forme ouverte.
    – RS3 + Telemachus peuvent produire un dataset public pour benchmarker l’« estimation vitesse véhicule IMU smartphone ».
    – Ce dataset pourra ensuite servir dans les papiers P004 (GNSS/INS robuste) et P005 (Qualité des données véhicules connectés).

    En conclusion, l’estimation vitesse véhicule IMU smartphone représente un défi technique majeur, mais les avancées récentes et les outils comme RS3 et Telemachus ouvrent la voie à des solutions robustes et reproductibles.

  • IMUSim : simuler les capteurs inertiels pour mieux comprendre la fusion GNSS/IMU

    IMUSim : simuler les capteurs inertiels pour mieux comprendre la fusion GNSS/IMU

    L’expression IMUSim simulation inertielle GNSS/IMU désigne un environnement de simulation open-source. Il permet de comprendre la fusion capteurs et de valider les algorithmes RS3 et Telemachus. Ainsi, il constitue un outil clé dans ce domaine.

    IMUSim simulation inertielle GNSS IMU
    Schéma simplifié d’une simulation inertielle IMUSim (accéléromètres et gyroscopes virtuels).

    Pour valider un algorithme de fusion GNSS/IMU, il faut d’abord disposer de signaux réalistes.
    En effet, c’est précisément le rôle d’IMUSim, un environnement de simulation open-source. Il permet de générer des mesures d’accéléromètres et de gyroscopes virtuels.
    De plus, c’est une brique essentielle pour comprendre les fondations physiques et statistiques de la fusion inertielle. Elle est utile avant d’aller vers les approches hybrides (MMKF, DVSE) utilisées dans RS3 et Telemachus.

    Voir le projet IMUSim sur GitHub


    1. IMUSim et la simulation inertielle GNSS/IMU

    Développé par Young et al. (2011), IMUSim est un simulateur Python conçu pour la recherche et l’enseignement en traitement de signaux inertiels.
    Il permet de :
    – modéliser la cinématique d’un objet en 3D (trajectoires, vitesses angulaires) ;
    – générer les lectures correspondantes d’un capteur IMU (accéléromètres, gyroscopes, magnétomètres) ;
    – injecter des modèles de bruit réalistes, basés sur la variance d’Allan ou des paramètres physiques connus ;
    – tester des filtres de Kalman ou des algorithmes d’estimation d’attitude (AHRS).

    L’objectif est d’offrir une base cohérente et reproductible pour expérimenter. Ainsi, on peut travailler sans dépendre du matériel physique.


    2. Architecture et fonctionnement

    IMUSim repose sur une approche orientée simulation. Ainsi, il comprend plusieurs modules :
    – un module cinématique gère la dynamique de mouvement (position, vitesse, rotation) ;
    – un module de capteur applique un modèle d’erreur IMU, comprenant biais, dérive, marche aléatoire et cross-axis ;
    – un moteur de génération temporelle produit des signaux échantillonnés à fréquence configurable (jusqu’à plusieurs centaines de Hz).

    Le modèle de bruit IMU repose sur les paramètres caractéristiques (biais, dérive, marche aléatoire angulaire). Ces paramètres sont ajustables via les coefficients Allan.
    Formellement, le bruit peut être modélisé comme :
    (\omega_m = \omega_t + b + \eta),
    où (\omega_m) est la mesure, (b) le biais lentement variable, et (\eta) le bruit blanc gaussien.

    Les sorties sont exportables sous forme de fichiers CSV ou Python. En somme, elles sont prêtes à être intégrées dans d’autres environnements (MATLAB, ROS, RS3).


    3. Liens avec RS3 et Telemachus

    Dans le cadre de RS3 (RoadSimulator3), IMUSim constitue une référence historique. En effet, il a inspiré la logique de simulation inertielle (génération des signaux à 10 Hz, bruit inertiel, topographie).

    Les principes d’IMUSim se retrouvent dans plusieurs aspects :
    – la chaîne RS3 → Telemachus, où les signaux IMU simulés sont convertis au format pivot ;
    – le pipeline de validation Telemachus (RFC-0007, RFC-0009) pour tester les algorithmes de fusion GNSS/IMU ;
    – les études sur les erreurs stochastiques et la reproductibilité (C4 VAE).

    IMUSim reste un outil de référence pour l’enseignement et la recherche. Il illustre la propagation des erreurs inertiales et leur correction par filtrage. De plus, il s’intègre naturellement dans les workflows modernes RS3 et Telemachus.

    Lire aussi : RS3, simulateur inertiel 10 Hz


    4. Pourquoi c’est encore pertinent ?

    Même si de nouveaux frameworks (DVSE, MMKF) utilisent l’apprentissage profond, la simulation inertielle reste indispensable.
    Elle sert à générer des cas extrêmes de mouvement (accélération, virages serrés, vibrations).
    De plus, elle permet de valider des algorithmes en conditions contrôlées.
    Par ailleurs, elle aide à quantifier la dérive et à calibrer les modèles de bruit.

    Les travaux récents de Liu (2023) et Mafi (2025) prolongent cette logique. En effet, ils s’appuient sur les principes de modélisation inertielle d’IMUSim. Toutefois, ils les étendent à des contextes GNSS/IMU hybrides ou appris.


    5. En résumé

    IMUSim reste un pilier conceptuel dans la recherche en fusion inertielle.
    Il est simple, open-source et rigoureusement documenté.
    De plus, il est parfait pour comprendre la propagation des erreurs IMU.
    C’est un lien direct entre physique, mathématiques et simulation numérique.

    IMUSim est plus qu’un simulateur. En effet, c’est la base conceptuelle de la recherche en fusion inertielle. Il lie physique, mathématiques et simulation numérique.
    Son héritage perdure dans RS3 et Telemachus. Ces derniers poursuivent cette mission de validation ouverte et reproductible.

    En conclusion, IMUSim simulation inertielle GNSS/IMU reste un pilier de la recherche moderne sur la fusion inertielle.


    ✳️ Références :
    – Young, P. et al. (2011) — IMUSim: A Simulation Environment for Inertial Sensing Algorithm Design and Evaluation.
    – Liu, H. et al. (2023) — A Comprehensive Review of GNSS/INS Integration.
    – Mafi, S. et al. (2025) — Consensus Multi-Model Kalman Filter for Robust Vehicle State Estimation.

  • Filtrage invariant GNSS IMU : approche robuste de localisation RS3

    Filtrage invariant GNSS IMU : une approche géométrique pour la robustesse

    Le filtrage invariant GNSS IMU révolutionne la fusion de capteurs pour la localisation des véhicules. Contrairement aux méthodes classiques, ce filtrage invariant s’appuie sur la géométrie des groupes de Lie, garantissant stabilité et précision dans les pipelines RS3 et Telemachus.

    filtrage invariant GNSS IMU localisation RS3
    Le filtrage invariant (IEKF) applique la géométrie des groupes de Lie à la localisation véhicule.

    De quoi parle le papier original ?

    L’article “Invariant Filtering on the Two-Frame Group for Vehicle Localization with Unknown Parameters” (Chauchat et al., 2024) étend le cadre du Groupe à Deux Cadres (TFG) pour estimer non seulement la position et l’attitude d’un véhicule, mais aussi des paramètres inconnus comme le bras de levier GNSS et le facteur d’échelle (lié au rayon des roues ou à la pression des pneus).

    Grâce à un changement de variables astucieux (X' = X / s), le système peut être reformulé sur le groupe de Similitude (Sim(2)), permettant d’obtenir des équations d’erreur autonomes — cœur de la robustesse du IEKF.

    Les résultats montrent un taux de convergence supérieur à 98 %, même avec des erreurs initiales d’attitude supérieures à 200°, là où l’EKF standard échoue presque toujours.


    Schéma conceptuel du filtrage invariant GNSS IMU

    schéma filtrage invariant GNSS IMU RS3
    Schéma conceptuel du filtrage invariant sur groupe de Lie.

    Dans ce schéma, la géométrie du mouvement est directement intégrée dans le filtre.
    L’erreur évolue sur le groupe lui-même (et non dans un espace linéaire arbitraire), garantissant des propriétés de stabilité fortes.


    Application du filtrage invariant GNSS IMU à RS3 et Telemachus

    Ce cadre n’est pas purement théorique : il inspire directement la conception de pipelines de simulation et de validation inertielle dans RS3 et Telemachus, en offrant une base mathématique rigoureuse pour évaluer la cohérence physique des modèles.

    Problème traité Approche RS3 / Telemachus Lien avec IEKF
    Estimation de vitesse sans GNSS Modèles inertiels simulés + apprentissage supervisé L’IEKF fournit une référence physique stable
    Gestion des erreurs de capteurs Modélisation paramétrique RS3 + profils de bruit Telemachus Même logique de propagation autonome
    Bras de levier et échelle véhicule Simulation topologique et inertielle Reprend les notions de Sim(2) et d’échelle dynamique

    Perspectives

    L’extension du filtrage invariant vers des modèles multi-capteurs (GNSS, IMU, roues, caméras) ouvre la voie à des pipelines hybrides où la géométrie des groupes de Lie sert de colonne vertébrale pour intégrer l’apprentissage automatique.
    Les travaux récents sur les Kalman invariants multi-modèles (MMKF) (Mafi et al., 2025) prolongent cette direction, et RS3 pourrait jouer un rôle clé comme banc de test ouvert pour ces architectures.

    Ces approches posent les bases d’un paradigme où la géométrie remplace la linéarisation approximative du monde inertiel.
    En d’autres termes, les systèmes deviennent géométriquement cohérents avant même d’être corrigés par les données.


    Complément scientifique

    Le filtrage invariant repose sur la définition d’un espace d’erreur autonome :

    Ẋ = f(X, u)
    où X désigne l’état estimé et E = χ⁻¹·ĥχ l’erreur sur le groupe de Lie.

    Contrairement au filtre de Kalman étendu, la dynamique de l’erreur ne dépend plus de l’état estimé, garantissant stabilité et convergence.

    Lire l’article original sur HAL

    Lire aussi : RS3, simulateur inertiel 10 Hz


    📚 Références
    – Chauchat, A., Barrau, A., Bonnabel, S. (2024). Invariant Filtering on the Two-Frame Group for Vehicle Localization with Unknown Parameters.
    – Boguspayev et al. (2023). A Comprehensive Review of GNSS/INS Integration.
    – Mafi, F. et al. (2025). Consensus Multi-Model Kalman Filter.
    – Young, A.D. et al. (2011). IMUSim: A Simulation Environment for Inertial Sensing Algorithm Design and Evaluation.

  • RoadSimulator3 : Un Simulateur Inertiel et GPS Haute Fréquence pour la Mobilité Intelligente

    Simulateur inertiel véhicule connecté – Données GPS/IMU 10 Hz

    Simulateur inertiel véhicule connecté

    Le simulateur inertiel véhicule connecté RoadSimulator3 vous permet de créer des trajectoires synthétiques avec des données GPS/IMU cohérentes à 10 Hz. Il est conçu pour reproduire fidèlement l’inertie d’un véhicule en mouvement, avec des événements de conduite simulés (freinage, accélération, dos d’âne…), le tout enrichi de données géographiques issues d’OpenStreetMap et OSRM.

    Fonctionnalités clés pour la simulation inertielle

    • Production de données GPS/IMU haute fréquence (10 Hz)
    • Ajout d’événements inertiels : freinages, accélérations, irrégularités
    • Simulation gyroscopique et inertielle réaliste avec bruit configurable
    • Export au format CSV, JSON, HTML interactif ou image PNG
    • Données enrichies : speed, acc\_x, acc\_y, gyro\_x, event, road\_type

    Applications du simulateur pour véhicules connectés

    Ce simulateur s’adresse aux chercheurs, ingénieurs et développeurs d’algorithmes embarqués. Il permet de :

    • Créer des jeux de données synthétiques pour entraîner des modèles IA
    • Valider des algorithmes de détection d’événements de conduite
    • Tester des calculateurs en conditions réalistes
    • Explorer les effets inertiels en fonction des types de route

    Illustration d’un trajet avec événements IMU

    simulateur inertiel véhicule connecté – carte inertielle et GPS

    Accès à la documentation et aux ressources

    Tester RoadSimulator3

    Vous pouvez tester la génération d’un trajet inertiel, ou l’intégrer dans vos projets de mobilité. Contactez-nous pour une démonstration personnalisée ou un accès anticipé.

    📩 Demander une démo